Skip to content

Cart

Your cart is empty

How to Run Yolov9 Real Time Object Detection on MILBOARD AGX

WHAT YOU WILL LEARN?

1- Download the requirement package via terminal

2- Download the Deepstream-YOLO repo

3- Compile the Library

4- Run

ENVIRONMENT

Hardware:MILBOARD AGX


OS:Ubuntu 20.04



In this blog post, you will learnhow to run Yolov9 Object Detection in real time. The GitHub repo hasbeen taken as a reference for the entire process.


1- Firstly download the requirement package via terminal

$ sudo apt install libgstrtspserver-1.0-dev

2- Check cuda and deepstream-app version if this both package is not installed please install via NVIDIA SDK manager.


$ nvcc --version
$ deepstream-app --version

3- Download the Deepstream-YOLO repo


$ git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
$ cd DeepStream-Yolo

4- Compile the Library

    a. Set the CUDA_VER according to your DeepStream version.
That tutorial we will use 11.4 version of CUDA


$ export CUDA_VER=11.4

    b. Make the Lib


$ make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo


5- Edit the config_infer_primary_yoloV9.txt file according to your model
In this tutorial we will use yolov9-s-converted.pt.onnx model

6- Edit the deepstream_app_config.txt file according to your model.
Change the config_file parameter your yolo model

Run

NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).

Press ‘q’ to stop the program.

Thank you for reading our blog post.